STEVE ADLER

Practical Programmer

Robert L. Glass

How Not To Prepare for a
Consulting Assighment, and
Other Ugly Consultancy Truths

“Tell me it’s unvealistic before you
commit. Then do it anyway.”—Mark
Servello of ChangeBridge and Ravi
Apte of Citicorp, discussing upper
management’s view of schedule negotia-
tion in their keynote addyess to the
Pacific Northwest Software
Quality Conference, 1997

consulting for a com-
puting organization
in industry. For some
personal reasons, I hadn’t |
consulted for a while.
I worried about the
risk that in my several |
years of uninvolvement I |
would be out of date on
how an organization
could and should
improve itself. So I
decided to do a little
more preparation than
usual for this assign-
ment, and I prepared some check-
lists of problems to look for.
Given the popularity of the
Software Engineering Institute’s
(SEI) Capability Maturity Model
(CMM), I decided to start there. I
would not be conducting an offi-
cial CMM evaluation, of course,
but I figured the CMM was a
good place to look for a set of
activities that good software orga-

Irecently did some

nizations should be engaged in. I
picked out the key process areas—
at all five levels, since I wasn’t sure
what the status of my client’s
organization might be—and made
them into a checklist. Preparatory

task number one was complete.
But I wanted to go well beyond
the CMM. In my view, the CMM
is about management and about
process, and there seemed to be
good reason to believe that my
clients could have problems out-
side those boundaries. Because I
strongly believe people are the key
to software success—they are more
important, in my view, than

process—I armed myself with
another SEI product. After Watts
Humphrey entered semiretirement
several years ago, Bill Curtis
joined the SEI to head up the
CMM effort, bringing with him a
strong belief in the impor-
tance of people on a soft-
ware project (essentially
the same view I have).
While he was continuing
to move the CMM for-
ward, he also initiated
work toward a People
Capability Maturity Model
(PCMM). That work has

. now gone sufficiently far

| so that documents describ-
ing it exist. PCMM is
being used enthusiastically
- in some parts of industry,
and it forms a second leg
of the software maturity
table the SEI is building. I
abstracted the key process
areas from the PCMM and made a
checklist. Preparatory task number
two was complete.

However, I still felt underpre-
pared. Certainly people and
process are important to the suc-
cess of a software organization, but
there is at least one other area that
could make a difference in project
success—technology. The SEI has,
in fact, talked about an eventual

COMMUNICATIONS OF THE ACM December 1998/Vol. 41, No. 12 11



goal of building a three-legged
software maturity table, including
technology as that third leg. But,
partly because of the success of
their process and people
approaches, they have simply
never gotten around to it. (The
SEI has also discussed a fourth leg,
acquisition management, but
again they have done little toward
that goal, and it did not seem rele-
vant to the organization for which
I was to consult.) How would I
come up with a checklist of key
technology practices?

I turned to the book, ISO
Approach to Building Quality Soft-
ware (Prentice-Hall, 1996) I co-
authored with Osten Oskarsson of
Sweden for some technology key
process areas. (It is important to
point out that, unlike most of my
software colleagues, I view quality
as a primarily technical, not a
management, topic. The reason for
my believe is my view that the
quality attributes, such as reliabil-
ity and efficiency and maintain-
ability and portability and more,
can only be put into the software
product—and monitored in the
software product—by technolo-
gists. These attributes are consid-
erably more technically complex
than the average manager can—or
should—be able to monitor.)

I believe the technical
approaches to software projects
are, of necessity, project-
dependent. That is, one
approaches software projects very
differently according to their:

e Size. Large projects require more
formality (in various forms,
including communication/docu-
mentation) than small ones.

o Application domain. Information
systems projects are quite differ-

ent, for example, from real-time
or scientific ones.

e Criticality. Reliability, for exam-
ple, is an overwhelmingly
important goal on life- and dol-
lar-critical projects.

o Levels of innovation. If you've
never solved a problem like the
current one before, you are likely
to use new and untried
approaches to complement the
more predictable ones.

To bring this increasingly long
story about preparation to a close,
I armed myself with some techni-
cal key process areas, carefully not-
ing which were important for the
kinds of projects I knew my client
was engaged in. Preparatory task
three, the last of those tasks, was
now complete.

I was now prepared, I felt, for
whatever category of problems my
prospective client was facing. I
could attack process problems with
wisdom from the CMM. I could
solve people problems using the
PCMM. I could fix technical prob-
lems using my book. Boy, was I
ready! Bring on the consulting trip.

But from my first day on site, I
realized all my preparation was for
naught. None of these three elabo-
rate preparations even came close
to addressing the problems my
client faced. There was something
else deeply wrong with the organi-
zation I worked with, and it was
only marginally about process; it
was only marginally about people;
and it was only marginally about
technology.

The problem was schedule. A
choking, confining, impossible
schedule. The organization with
which I was meeting—the people
with whom I was talking—knew
about all those key process area

12 December 1998/Vol. 41, No. 12 COMMUNICATIONS OF THE ACM

points, all the right ways to build
software. The problem: the sched-
ule was so tight that they believed
they couldn’t do them.

Because of these schedule
problems:

1. The system was under-
designed. Management, con-
cerned about the amount of
time design had taken, told the
software engineers to “start cod-
ing.” (I have always thought the
story about managers telling
programmers to start cutting
code prematurely was a tall tale.
Was I wrong!)

2. The code was terribly fragile.
(What code wouldn'’t be, if the
design was never completed!)

3. Enhancements took far too long
to achieve, and regression errors
were endemic. (Of course, given
that the code was fragile and
the design was inadequate ...)

4. The code was hard to read, and
lacked commentary. (Another
frill abandoned in the interests
of scheduling.)

5. Developer testing was inade-
quate, and the system test orga-
nization found most of the
errors (same thought).

6 No one had ownership of the
code. (Because of the schedule,
consultant and student help were
brought in, resulting in (at best)
fragmented coding practices, and
little sense of responsibility.)

The managers and technologists
of my client knew all about mak-
ing good design, writing good
code, testing appropriately
(including regression testing), and
how to encourage people to take
responsibility for the work they
did. They knew all that stuff, in
spades. The problem was, they



Practical Programmer

weren'’t being allowed to do it.

What was a consultant to do? I
could go through my carefully pre-
pared checklists, and give them all
the wisdom of the SEI and myself.
But it wouldn’t have helped a
whit. There is a reason you bring
in consultants when you are suffer-
ing, of course. If all goes well on
the consulting gig, your consul-
tant finds out what you already
knew about, and puts those find-
ings into a presentation for your
upper management. And upper
management, always prepared to
believe a consultant more than
their own in-house talent, will
finally realize that what they have
been hearing all along from their
own people is true.

consulting client. They took the
pitch I made to them at the techni-
cal/line manager level, and turned
around and presented it to upper
management. And upper manage-
ment said all the right things
about understanding what was
happening and why. Superficially,
you would expect this story to have
a happy ending. But I doubt it.
There is something now happening
in the software world: Competition
is forcing enterprises into impossi-
ble schedules.

In retrospect, I should have
known in advance that my client’s
problem was excessive schedule
pressure. I think that’s probably
the most common characteristic of
software projects today, across

might think of; that the problem is
culturally ingrained, a product of
our times; that the obvious solu-
tions to the problem simply don’t
work; and that, without a solution
to the problem, the software field
is going to go right on doing the
wrong thing in the wrong way at
the wrong time—because there is
no mechanism to fix it.

I have this terrible aversion to
ending a column on a down note:
and since this one has hit rock bot-
tom, let me add one more bottom
line: Schedule pressure is the most
serious problem facing software
projects today. There is no silver-
bullet answer to the problem (if
there were, I'd bottle it and make
a fortune!) The only approach to

THINGS HAD LITERALLY CRAWLED TO A HALT IN SYSTEM TESTING,

with each new bug fix generating enough new bugs that

almost no forward progress was achieved.

And so it was on this consulting
job I recommended all that stuff
my clients already knew about, and
made that the one focus of my con-
sulting recommendations. And
then I made a heavy, pointed pitch
for schedule relief. I said things
like, “The approach you are taking
to accelerate schedule is actually
costing you long term, in that
enhancements and system testing
are taking such unpredictably long
periods of time that it is not possi-
ble to achieve any anticipated
schedule.” (Things had literally
crawled to a halt in system testing,
with each new bug fix generating
enough new bugs that almost no
forward progress was achieved.)

It is too early to know whether
my advice has really helped my

industry lines and domain lines.

I want to say something about
“guts management.” It is time for
first-line managers to stand up for
what they believe in and muster
the guts to just say “no” when
management demands the impos-
sible. But I now know this type
of approach doesn’t work in
today’s culture. For every manager
who says “no” to achieving the
impossible, there are 10 standing
by who are willing to say “yes.”
And one of those will be brought
on to replace that nay-saying
manager.

So what’s the bottom line? That
the schedule problem is the most
overwhelming problem of today’s
software organization, overriding
almost any other problem you

working within the problem is
plain, old-fashioned, communica-
tion. Tell upper management the
truth, not what they want to hear.
Work with them when they can’t
accept the truth. Define fallback
positions for when the inevitable
failure to achieve schedule occurs.
Let upper management see those
fallback positions in advance. Use
a “we’re in this together”
approach, not a “look what
they’re doing to us” approach.
And pray! @

ROBERT GLASS (rglass@indiana.edu) is the
publisher of Software Practitioner newsletter
and editor of Elsevier’s Journal of Systems and
Software.

© 1998 ACM 0002-0782/98/1200 $5.00

COMMUNICATIONS OF THE ACM December 1998/Vol. 41, No. 12 13



